17^2+17^2=c^2

Simple and best practice solution for 17^2+17^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17^2+17^2=c^2 equation:



17^2+17^2=c^2
We move all terms to the left:
17^2+17^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+578=0
a = -1; b = 0; c = +578;
Δ = b2-4ac
Δ = 02-4·(-1)·578
Δ = 2312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2312}=\sqrt{1156*2}=\sqrt{1156}*\sqrt{2}=34\sqrt{2}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34\sqrt{2}}{2*-1}=\frac{0-34\sqrt{2}}{-2} =-\frac{34\sqrt{2}}{-2} =-\frac{17\sqrt{2}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34\sqrt{2}}{2*-1}=\frac{0+34\sqrt{2}}{-2} =\frac{34\sqrt{2}}{-2} =\frac{17\sqrt{2}}{-1} $

See similar equations:

| y=6.50(3)+25 | | 8b^2-11b-15=-8 | | X+40y=3000 | | 500+90n=5,000 | | d-497/9=31 | | X/y12/8=15/y,y | | 23x+1+6x+5=180 | | 3x+x+4=21 | | 5/4+1/4=-1/7t+1/7 | | -18n+5=-17n-5 | | 5/3(x+5)=24 | | 7•3-4•(75/3-1)•7=x | | 3y+6+y=y-3+y | | 9=f-6 | | 1+x+2x-4=3(x-3)+6 | | 4x^2-14x+15=0 | | 4n^2-9n-18=0 | | 2x-6x=-4x+3 | | c-412/16=24 | | (2/3x)-5=(7/9x) | | (-8)=v+2 | | v-763/11=14 | | -6(x+4)-2x=8 | | 9(4x+5.2)=75 | | 4(2x-5)-8=-5x+4(-5-7x) | | 26=x/3-9 | | x÷3.2=3.5 | | 9.6–2.4x=-24 | | (8.5/p)*1=8.5 | | x4=134 | | 5w+19=3w+19.4 | | 5d-1=-2 |

Equations solver categories